skip to main content


Search for: All records

Creators/Authors contains: "Bodine, David J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The scientific community has long acknowledged the importance of high-temporal-resolution radar observations to advance science research and improve high-impact weather prediction. Development of innovative rapid-scan radar technologies over the past two decades has enabled radar volume scans of 10–60 s compared to 3–5 min with traditional parabolic dish research radars and the WSR-88D radar network. This review examines the impact of rapid-scan radar technology, defined as radars collecting volume scans in 1 min or less, on atmospheric science research spanning different subdisciplines and evaluates the strengths and weaknesses of the use of rapid-scan radars. In particular, a significant body of literature has accumulated for tornado and severe thunderstorm research and forecasting applications, in addition to a growing number of studies of convection. Convection research has benefited substantially from more synchronous vertical views, but could benefit more substantially by leveraging multi-Doppler wind retrievals and complementary in situ and remote sensors. In addition, several years of forecast evaluation studies are synthesized from radar testbed experiments, and the benefits of assimilating rapid-scan radar observations are analyzed. Although the current body of literature reflects the considerable utility of rapid-scan radars to science research, a weakness is that limited advancements in understanding of the physical mechanisms behind observed features have been enabled. There is considerable opportunity to bridge the gap in physical understanding with the current technology using coordinated efforts to include rapid-scan radars in field campaigns and expanding the breadth of meteorological phenomena studied.

    Significance Statement

    Recently developed rapid-scan radar technologies, capable of collecting volumetric (i.e., three-dimensional) measurements in 10–60 s, have improved temporal sampling of weather phenomena. This review examines the impact of these radar observations from the past two decades on science research and emerging operational capabilities. Substantial breadth and impact of research is evident for tornado research and forecasting applications, in addition to documentation of other rapidly evolving phenomena associated with deep convection, such as tornadoes, hail, lightning, and tropical cyclones. This review identifies the strengths and weaknesses of how these radars have been used in scientific research to inform future studies, emerging from the increasing availability and capability of rapid-scan radars. In addition, this review synthesizes research that can benefit future operational radar decisions.

     
    more » « less
  2. Avian migration has fascinated humans for centuries. Insights into the lives of migrant birds are often elusive; however, recent, standalone technological innovations have revolutionized our understanding of this complex biological phenomenon. A future challenge for following these highly mobile animals is the necessity of bringing multiple technologies together to capture a more complete understanding of their movements. Here, we designed a proof-of-concept multi-sensor array consisting of two weather surveillance radars (WSRs), one local and one regional, an autonomous moon-watching sensor capable of detecting birds flying in front of the moon, and an autonomous recording unit (ARU) capable of recording avian nocturnal flight calls. We deployed this array at a field site in central Oklahoma on select nights in March, April, and May of 2021 and integrated data from this array with wind data corresponding to this site to examine the influence of wind on the movements of spring migrants aloft across these spring nights. We found that regional avian migration intensity is statistically significantly negatively correlated with wind velocity, in line with previous research. Furthermore, we found evidence suggesting that when faced with strong, southerly winds, migrants take advantage of these conditions by adjusting their flight direction by drifting. Importantly, we found that most of the migration intensities detected by the sensors were intercorrelated, except when this correlation could not be ascertained because we lacked the sample size to do so. This study demonstrates the potential for multi-sensor arrays to reveal the detailed ways in which avian migrants move in response to changing atmospheric conditions while in flight.

     
    more » « less
  3. Abstract

    When a tornado lofts debris to the height of the radar beam, a signature known as the tornadic debris signature (TDS) can sometimes be observed on radar. The TDS is a useful signature for operational forecasters because it can confirm the presence of a tornado and provide information about the amount of damage occurring. Since real-time estimates of tornadic intensity do not have a high degree of accuracy, past studies have hypothesized that the TDS could also be an indicator of the strength of a tornado. However, few studies have related the tornadic wind field to TDS characteristics because of the difficulty of obtaining accurate, three-dimensional wind data in tornadoes from radar data. With this in mind, the goals of this study are twofold: 1) to investigate the relationships between polarimetric characteristics of TDSs and the three-dimensional tornadic winds, and 2) to define relationships between polarimetric radar variables and debris characteristics. Simulations are performed using a dual-polarization radar simulator called SimRadar; large-eddy simulations (LESs) of tornadoes; and a single-volume,-matrix-based emulator. Results show that for all simulated debris types increases in horizontal and vertical wind speeds are related to decreases in correlation coefficient and increases in TDS area and height and that, conversely, decreases in horizontal and vertical wind speeds are related to increases in correlation coefficient and decreases in TDS area and height. However, the range of correlation coefficient values varies with debris type, indicating that TDSs that are composed of similar debris types can appear remarkably different on radar in comparison with a TDS with diverse scatterers. Such findings confirm past observational hypotheses and can aid operational forecasters in tornado detection and potentially the categorization of damage severity using radar data.

     
    more » « less
  4. null (Ed.)
    A multi-radar analysis of the 20 May 2013 Moore, Oklahoma, U.S. supercell is presented using three Weather Surveillance Radars 1988 Doppler (WSR-88Ds) and PX-1000, a rapid-scan, polarimetric, X-band radar, with a focus on the period between 1930 and 2008 UTC, encompassing supercell maturation through rapid tornado intensification. Owing to the 20-s temporal resolution of PX-1000, a detailed radar analysis of the hook echo is performed on (1) the microphysical characteristics through a hydrometeor classification algorithm (HCA)—inter-compared between X- and S-band for performance evaluation—including a hail and debris class and (2) kinematic properties of the low-level mesocyclone (LLM) assessed through ΔVr analyses. Four transient intensifications in ΔVr prior to tornadogenesis are documented and found to be associated with two prevalent internal rear-flank downdraft (RFD) momentum surges, the latter surge coincident with tornadogenesis. The momentum surges are marked by a rapidly advancing reflectivity (ZH) gradient traversing around the LLM, descending reflectivity cores (DRCs), a drop in differential reflectivity (ZDR) due to the advection of smaller drops into the hook echo, a decrease in correlation coefficient (ρhv), and the detection of debris from the HCA. Additionally, volumetric analyses of ZDR and specific differential phase (KDP) signatures show general diffusivity of the ZDR arc even after tornadogenesis in contrast with explosive deepening of the KDP foot downshear of the updraft. Similarly, while the vertical extent of the ZDR and KDP columns decrease leading up to tornadogenesis, the phasing of these signatures are offset after tornadogenesis, with the ZDR column deepening the lagging of KDP. 
    more » « less
  5. null (Ed.)
    Abstract As the existing NEXRAD network nears the end of its life cycle, intense study and planning are underway to design a viable replacement system. Ideally, such a system would offer improved temporal resolution compared to NEXRAD, without a loss in data quality. In this study, scan speedup techniques—such as beam multiplexing (BMX) and radar imaging—are tested to assess their viability in obtaining high-quality rapid updates for a simulated long-range weather radar. The results of this study—which uses a Weather Research and Forecasting (WRF) Model–simulated supercell case—show that BMX generally improves data quality for a given scan time or can provide a speedup factor of 1.69–2.85 compared to NEXRAD while maintaining the same level of data quality. Additionally, radar imaging is shown to improve data quality and/or decrease scan time when selectively used; however, deleterious effects are observed when imaging is used in regions with sharp reflectivity gradients parallel to the beam spoiling direction. Consideration must be given to the subsequent loss of sensitivity and beam broadening. Finally, imaging is shown to have an effect on the radar-derived mesocyclone strength (Δ V ) of a simulated supercell. Because BMX and radar imaging are most easily achieved with an all-digital phased array radar (PAR), these results make a strong argument for the use of all-digital PAR for high-resolution weather observations. It is believed that the results from this study can inform decisions about possible scanning strategies and design of a NEXRAD replacement system for high-resolution weather radar data. 
    more » « less
  6. null (Ed.)
    Abstract Techniques to mitigate analysis errors arising from the nonsimultaneity of data collections typically use advection-correction procedures based on the hypothesis (frozen turbulence) that the analyzed field can be represented as a pattern of unchanging form in horizontal translation. It is more difficult to advection correct the radial velocity than the reflectivity because even if the vector velocity field satisfies this hypothesis, its radial component does not—but that component does satisfy a second-derivative condition. We treat the advection correction of the radial velocity ( υ r ) as a variational problem in which errors in that second-derivative condition are minimized subject to smoothness constraints on spatially variable pattern-translation components ( U , V ). The Euler–Lagrange equations are derived, and an iterative trajectory-based solution is developed in which U , V , and υ r are analyzed together. The analysis code is first verified using analytical data, and then tested using Atmospheric Imaging Radar (AIR) data from a band of heavy rainfall on 4 September 2018 near El Reno, Oklahoma, and a decaying tornado on 27 May 2015 near Canadian, Texas. In both cases, the analyzed υ r field has smaller root-mean-square errors and larger correlation coefficients than in analyses based on persistence, linear time interpolation, or advection correction using constant U and V . As some experimentation is needed to obtain appropriate parameter values, the procedure is more suitable for non-real-time applications than use in an operational setting. In particular, the degree of spatial variability in U and V , and the associated errors in the analyzed υ r field are strongly dependent on a smoothness parameter. 
    more » « less
  7. Abstract A simulated vortex within a large-eddy simulation is subjected to various surface terrain, implemented through the immersed boundary method, to analyze the effects of complex topography on vortex behavior. Thirty simulations, including a control with zero-height terrain, are grouped into four categories—2D sinusoidal hills, 3D hills, valleys, and ridges—with slight modifications within each category. A medium-swirl-ratio vortex is translated over shallow terrain, which is modest in size relative to the vortex core diameter and with no explicitly defined surface roughness. While domain size restricts results to the very near-field effects of terrain, vortex–terrain interaction yields notable results. Terrain influences act to increase the variability of the near-surface vortex, including a notable leftward (rightward) deflection, acceleration (deceleration), and an expansion (a contraction) of the vortex as it ascends (descends) the terrain owing to changes in the corner flow swirl ratio. Additionally, 10-m track analyses show stronger horizontal wind speeds are found 1) on upslope terrain, resulting from transient subvortices that are more intense compared to the control simulation, and 2) in between adjacent hills simultaneous with strong pressure perturbations that descend from aloft. Composite statistics confirm that the region in between adjacent hills has the strongest horizontal wind speeds, while upward motions are more intense during ascent. Overall, valley (ridge) simulations have the largest horizontal (vertically upward) wind speeds. Last, horizontal and vertical wind speeds are shown to be affected by other terrain properties such as slope steepness and two-dimensionality of the terrain. 
    more » « less
  8. null (Ed.)
    Abstract The hurricane boundary layer (HBL) has been observed in great detail through aircraft investigations of tropical cyclones over the open ocean, but the coastal transition of the HBL has been less frequently observed. During the landfall of Hurricane Irene (2011), research and operational aircraft over water sampled the open-ocean HBL simultaneously with ground-based research and operational Doppler radars onshore. The location of the radars afforded 13 h of dual-Doppler analysis over the coastal region. Thus, the HBL from the coastal waterways, through the coastal transition, and onshore was observed in great detail for the first time. Three regimes of HBL structure were found. The outer bands were characterized by temporal perturbations of the HBL structure with attendant low-level wind maxima in the vicinity of rainbands. The inner core, in contrast, did not produce such perturbations, but did see a reduction of the height of the maximum wind and a more jet-like HBL wind profile. In the eyewall, a tangential wind maximum was observed within the HBL over water as in past studies and above the HBL onshore. However, the transition of the tangential wind maximum through the coastal transition showed that the maximum continued to reside in the HBL through 5 km inland, which has not been observed previously. It is shown that the adjustment of the HBL to the coastal surface roughness discontinuity does not immediately mix out the residual high-momentum jet aloft. Thus, communities closest to the coast are likely to experience the strongest winds onshore prior to the complete adjustment of the HBL. 
    more » « less
  9. A detailed damage survey is combined with high-resolution mobile, rapid-scanning X-band polarimetric radar data collected on the Shawnee, Oklahoma, tornado of 19 May 2013. The focus of this study is the radar data collected during a period when the tornado was producing damage rated EF3. Vertical profiles of mobile radar data, centered on the tornado, revealed that the radar reflectivity was approximately uniform with height and increased in magnitude as more debris was lofted. There was a large decrease in both the cross-correlation coefficient ( ρ hv ) and differential radar reflectivity ( Z DR ) immediately after the tornado exited the damaged area rated EF3. Low ρ hv and Z DR occurred near the surface where debris loading was the greatest. The 10th percentile of ρ hv decreased markedly after large amounts of debris were lofted after the tornado leveled a number of structures. Subsequently, ρ hv quickly recovered to higher values. This recovery suggests that the largest debris had been centrifuged or fallen out whereas light debris remained or continued to be lofted. Range–height profiles of the dual-Doppler analyses that were azimuthally averaged around the tornado revealed a zone of maximum radial convergence at a smaller radius relative to the leading edge of lofted debris. Low-level inflow into the tornado encountering a positive bias in the tornado-relative radial velocities could explain the existence of the zone. The vertical structure of the convergence zone was shown for the first time. 
    more » « less